
appimage-builder
Release 1.0.0

Sep 06, 2023

First steps

1 Getting help 3

2 First steps 5
2.1 Get appimage-builder . 5
2.2 Tutorial . 7
2.3 Frequent Asked Questions . 10
2.4 Shell application (BASH) . 12
2.5 Gnome application (gnome-calculator) . 12
2.6 Qt/Kde application (kcalc) . 13
2.7 Multimedia application (VLC) . 15
2.8 PyQt5 application . 16
2.9 Path Mapping (GIMP) . 19
2.10 Flutter Application . 22
2.11 Gambas3 Application . 25
2.12 AppImage Updates . 30
2.13 AppImage Signing . 31
2.14 Testing . 32
2.15 Setup Helpers . 34
2.16 Troubleshooting . 36
2.17 Full AppImage bundle . 38
2.18 Producing AppImages on Gitlab CI . 40
2.19 Producing AppImages on GitHub . 41
2.20 Recipe . 42

i

ii

appimage-builder, Release 1.0.0

appimage-builder is a novel tool for creating AppImages. It uses the system package manager to resolve the
application dependencies and creates a complete bundle. It can be used to pack almost any kind of applications
including those made using: C/C++, Python, and Java.

Featuring:

• Real GNU/Linux packaging (no more distro packaging)

• Simple recipes

• Simple workflow

• Backward and forward compatibility

• One binary, many target systems.

For information about the AppImage packaging format visit: https://appimage.org/

First steps 1

https://appimage.org/

appimage-builder, Release 1.0.0

2 First steps

CHAPTER 1

Getting help

Having trouble? We’d like to help!

• Try the FAQ – it’s got answers to some common questions.

• Ask or search questions in StackOverflow using the AppImage tag.

• Ask or search questions in the AppImage subreddit.

• Ask a question in the #appimage IRC channel.

• Report bugs with appimage-builder in our issue tracker.

3

https://stackoverflow.com/tags/AppImage
https://www.reddit.com/r/appimage/
irc://libera.chat/appimage
https://github.com/AppImageCrafters/appimage-builder/issues

appimage-builder, Release 1.0.0

4 Chapter 1. Getting help

CHAPTER 2

First steps

2.1 Get appimage-builder

2.1.1 AppImage

appimage-builder is available as ready to use AppImage for amd64 systems. Just download it from the releases
and make it executable. In case you want it to be available in your cli as a command you can move it to /usr/
local/bin or other location in your PATH.

wget -O appimage-builder-x86_64.AppImage https://github.com/AppImageCrafters/appimage-
→˓builder/releases/download/v1.1.0/appimage-builder-1.1.0-x86_64.AppImage
chmod +x appimage-builder-x86_64.AppImage

install (optional)
sudo mv appimage-builder-x86_64.AppImage /usr/local/bin/appimage-builder

2.1.2 Docker Image

There is a docker image with appimage-builder ready to be used at hub.docker.com.

docker pull appimagecrafters/appimage-builder:latest

Note: Testing AppImages is not supported on this format. Always use –skip-test.

2.1.3 Manual Installation

The project is built using Python 3 and uses various command-line applications to fulfill its goal. Depending on the
host system and the recipe the packages providing such applications may vary.

5

https://github.com/AppImageCrafters/appimage-builder/releases
https://hub.docker.com/r/appimagecrafters/appimage-builder

appimage-builder, Release 1.0.0

Installing dependencies

Debian/Ubuntu

sudo apt install -y binutils coreutils desktop-file-utils fakeroot fuse libgdk-
→˓pixbuf2.0-dev patchelf python3-pip python3-setuptools squashfs-tools strace util-
→˓linux zsync

Install appimagetool AppImage (only for appimage-buidler < v1.0.3)
sudo wget https://github.com/AppImage/AppImageKit/releases/download/continuous/
→˓appimagetool-x86_64.AppImage -O /usr/local/bin/appimagetool
sudo chmod +x /usr/local/bin/appimagetool

Archlinux

sudo pacman -Sy binutils desktop-file-utils fakeroot gdk-pixbuf2 patchelf python-pip
→˓python-setuptools squashfs-tools strace wget zsync

Install appimagetool AppImage (only for appimage-buidler < v1.0.3)
sudo wget https://github.com/AppImage/AppImageKit/releases/download/continuous/
→˓appimagetool-x86_64.AppImage -O /usr/local/bin/appimagetool
sudo chmod +x /usr/local/bin/appimagetool

Installing appimage-builder

Installing latest tagged release:

sudo pip3 install appimage-builder

Installing development version:

sudo pip3 install git+https://github.com/AppImageCrafters/appimage-builder.git

Install appimagetool

Note: Only for appimage-buidler < v1.0.3

There is an issue in the AppImage runtime format that prevents it proper execution inside docker containers. Therefore
we must use the following workaround to make appimagetool work properly.

Install appimagetool AppImage
sudo wget https://github.com/AppImage/AppImageKit/releases/download/continuous/
→˓appimagetool-x86_64.AppImage -O /opt/appimagetool

workaround AppImage issues with Docker
cd /opt/; sudo chmod +x appimagetool; sed -i 's|AI\x02|\x00\x00\x00|' appimagetool;
→˓sudo ./appimagetool --appimage-extract
sudo mv /opt/squashfs-root /opt/appimagetool.AppDir
sudo ln -s /opt/appimagetool.AppDir/AppRun /usr/local/bin/appimagetool

6 Chapter 2. First steps

appimage-builder, Release 1.0.0

2.2 Tutorial

In this page is explained how to build an AppImage for a simple Qt/Qml application. The tutorial is meant to be per-
formed in a Ubuntu (18.04 or newer) system where appimage-builder have been installed. Check the Get appimage-
builder for instructions. The application code can be found here.

2.2.1 Compiling the sources

The first step in our process is to build the application binaries. We will set the install prefix to ‘/usr’ as appimage-
builder expects to find the application resources (desktop entry and the icon) in their standard paths.

install build dependencies
sudo apt-get install git cmake zlib1g-dev qtdeclarative5-dev qml-module-qtquick2 qml-
→˓module-qtquick-window2 qml-module-qtquick-layouts qml-module-qtquick-layouts qml-
→˓module-qtquick-controls2

get the application source code
git clone https://www.opencode.net/azubieta/qt-appimage-template.git

step into the application source code dir
cd qt-appimage-template

configure the build in 'release' mode using '/usr' as prefix
cmake . -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr

compile the application
make

2.2.2 Preparing the AppDir

We will use the DESTDIR make variable to install the binaries using a root different than ‘/’. Notice that while many
build toolchains such as cmake support this variable it’s not standard.

install the application to 'AppDir'
make install DESTDIR=AppDir

After installing the application into the AppDir we need to verify that it works as expected. Therefore we will execute
it and manually check that the application windows shows and all the components are visible and functional.

If the application fails to run or doesn’t shows a window when executed you will need to investigate and solve the
issue before continuing. Notice that applications must be relocatable in order to be put inside and AppImage.

execute the application
AppDir/usr/bin/qt-appimage-template

2.2.3 Generating the recipe

appimage-builder is capable of inspecting the runtime dependencies of a given application to create a recipe for
packaging it as AppImage. This can be done using the --generate argument as follows:

run recipe generation assistant
$ appimage-builder --generate

2.2. Tutorial 7

https://www.opencode.net/azubieta/qt-appimage-template
https://www.gnu.org/prep/standards/html_node/DESTDIR.html

appimage-builder, Release 1.0.0

The tool will prompt a questionnaire to gather the minimal required information to execute the application. If the a
desktop entry is found in the AppDir it will be used to fill the fields but you will be able to edit all the values. Make
sure of specifying the executable path properly otherwise the execution will fail.

> Basic Information :
> ? ID [Eg: com.example.app] : appimage-demo-qt5
> ? Application Name : AppImage Demo Qt5
> ? Icon : appimage-demo-qt5
> ? Version : latest
> ? Executable path relative to AppDir [usr/bin/app] : usr/bin/appimage-demo-qt5
> ? Arguments [Default: $@] : $@
> ? Update Information [Default: guess] : guess
> ? Architecture : amd64

Once the questionnaire is completed the application will be executed. At this point make sure here to test all your
applications features so all the external resources it may use are accessed and detected by the tool. Once your are done
testing close the application normally.

The tool will filter the accessed files, map them to deb packages and refine list to only include those packages that
are not dependencies of others already listed in order to reduce the list size. Finally the recipe will be wrote in a file
named AppImageBuilder.yml located in the current working directory.

2.2.4 Creating the AppImage

Once you have a recipe in place you can call appimage-builder to create the final AppImage. The tool will
perform the following steps:

Script step

Recipes can include an optional section name script. This can be used to perform the installation of our application
binaries to the AppDir. This is not created by the generator but you can edit the AppImageBuilder.yml file and
add the following code before calling appimage-builder.

This step can be skip using the –skip-script argument.

script: |
remove any existent binaries
rm AppDir | true

compile and install binaries into AppDir
cmake . -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr
make install DESTDIR=AppDir

Build step

This is where the major part of the job is done. The tool will proceed to gather all the dependencies and to configure
the final bundle. Here are some of the actions it will perform:

• setup an independent apt configuration to resolve dependencies and download the packages

• download the packages

• extract the packages into the AppDir

• copy any other file that wasn’t found in a package (the ones listed in files > include)

8 Chapter 2. First steps

appimage-builder, Release 1.0.0

• remove excluded files (files > exclude)

• configure the runtime environment which includes:

– configure Qt and other frameworks/modules/libraries present in the bundle

– setup the library and binary paths (LD_LIBRARY_PATH and PATH environment variables)

– setup the ld-linux interpreter and deploying the custom AppRun to ensure backward compatibility

create the AppImage
appimage-builder --recipe AppImageBuilder.yml

Note: This step can be skip by passing the argument --skip-build.

Test step

The only way of ensuring that our application will run a given GNU/Linux distribution is by testing it. The tool
can make use of docker to run the AppDir that was created in the build step in different systems according to the
specifications on the recipe test section.

test section example
test:

fedora:
image: appimagecrafters/tests-env:fedora-30
command: ./AppRun
use_host_x: true

debian:
image: appimagecrafters/tests-env:debian-stable
command: ./AppRun
use_host_x: true

arch:
image: appimagecrafters/tests-env:archlinux-latest
command: ./AppRun
use_host_x: true

centos:
image: appimagecrafters/tests-env:centos-7
command: ./AppRun
use_host_x: true

ubuntu:
image: appimagecrafters/tests-env:ubuntu-xenial
command: ./AppRun
use_host_x: true

The application will be executed in each one of the systems listed above. You will have to manually verify that
everything works as expected and close the application so the tests can continue.

Note: The tool will use a set of docker images that can be found here: docker test environments

Note: Downloading the docker images may take a while the first time and the application may seem idle. Please be
patient or manually download the images using docker pull <image>

2.2. Tutorial 9

https://github.com/appimagecrafters/AppRun
https://hub.docker.com/r/appimagecrafters/tests-env

appimage-builder, Release 1.0.0

Warning: Docker must be installed in the system and the user must be able to use it without root permissions.
Use the following snippet to allow it.

install docker
sudo apt-get install docker.io

give non root permissions
sudo groupadd docker
sudo usermod -aG docker $USER

restart the your system

Note: This step can be skip by passing the argument --skip-test. You would like to use this argument when
creating scripts for packaging your software using Gitlab-Ci, GitHub Actions or other build service.

AppImage step

The tool will make use of appimagetool to generate the final ApppImage file. The resulting file should be located
in the current working directory.

Congratulations, you should have a working AppImage at this point!

Note: This step can be skip by passing the argument --skip-appimage.

2.2.5 Refining the recipe

While the --generate argument can be used to create an initial working recipe you will like to inspect and refine its
contents. By example is common to find theme packages being included when those are something quite distribution
specific. You can try removing those packages and run appimage-builder again (without the --generate
argument) to validate that the resulting bundle is still functional. Repeat the process until you’re happy with the result.

Some libc related files may also be found in the file > include section. Those can be safely excluded most of
the times but remember to test.

2.2.6 What’s next

The next steps for you is to learn how to do AppImage Updates and AppImage Signing. You may also want to check
the recipe specification Recipe for advanced tuning.

Thanks for your interest!

2.3 Frequent Asked Questions

2.3.1 What kind of application I can pack as AppImage?

In theory every kind of application no matter the technology used to build it. But some of them are a bit complex. Join
our community to get some help.

10 Chapter 2. First steps

appimage-builder, Release 1.0.0

2.3.2 What systems are supported?

• Debian

• Ubuntu

• Arch

Other will be added in the future.

2.3.3 What makes appimage-builder different?

appimage-builder uses a new approach for creating AppImages which is based on:

• bundling almost every dependency inside the AppImage (including glibc and family)

• selecting at runtime the newer glibc version to be used while running the bundled app using a custom AppRun

• excluding by default drivers and using the system ones at runtime

• restoring the environment variables while calling external binaries using function hooks

• patching paths on function calls at runtime using function hooks

This allows creating backward and forward compatible bundles with little effort if compared to other existent solutions
where the developer has to setup or tweak a build environment and finding/making backports of their app dependencies.

But this approach also has drawbacks, bundling everything means:

• AppImage will be at least 30Mb bigger

• critical software such as libssl will be frozen into the bundle

2.3.4 When should I use appimage-builder?

• You require using cutting edge technologies that cannot be found on the oldest and still maintained LTS distri-
bution

• You depend on binaries with fixed paths in their code

• You want to do a cross-build

In general it’s quite safe to use appimage-builder as long as you know the implications. Below you will find some
recommendations to mitigate those issues.

2.3.5 When should I NOT use appimage-builder?

• The target application can be built on the oldest and still maintained LTS distribution.

You will get an smaller bundle that will require less updates using other AppImage creation tools such as linuxdeploy

2.3.6 Where can I ask more about appimage-builder?

In the appimage-builder github project or in the Getting help spaces.

Get appimage-builder Get appimage-builder installed on your computer.

Tutorial Write your first appimage-builder recipe.

2.3. Frequent Asked Questions 11

https://github.com/linuxdeploy/
https://github.com/AppImageCrafters/appimage-builder

appimage-builder, Release 1.0.0

2.4 Shell application (BASH)

This recipe will generate a aarch64 (arm64) AppImage for bash. It’s cross-built from a amd64 system.

version: 1

AppDir:
path: ./AppDir

app_info:
id: org.gnu.bash
name: bash
icon: utilities-terminal
version: 4.4.20
exec: bin/bash
exec_args: $@

apt:
arch: arm64
sources:
- sourceline: 'deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports bionic main

→˓'
key_url: 'http://keyserver.ubuntu.com/pks/lookup?op=get&

→˓search=0x3b4fe6acc0b21f32'

include:
- bash
- coreutils

exclude:
- libpcre3

AppImage:
update-information: None
sign-key: None
arch: aarch64

2.5 Gnome application (gnome-calculator)

NOTE: If your app uses svg images you should bundle librsvg2-common

version: 1

AppDir:
path: ./AppDir

app_info:
id: org.gnome.Calculator
name: gnome-calculator
icon: gnome-calculator
version: 3.28.0
exec: usr/bin/gnome-calculator

apt:
arch: i386

(continues on next page)

12 Chapter 2. First steps

appimage-builder, Release 1.0.0

(continued from previous page)

sources:
- sourceline: 'deb [arch=i386] http://mx.archive.ubuntu.com/ubuntu/ bionic main

→˓restricted universe multiverse'
key_url: 'http://keyserver.ubuntu.com/pks/lookup?op=get&

→˓search=0x3b4fe6acc0b21f32'

include:
- gnome-calculator
- librsvg2-common

exclude:
- adwaita-icon-theme
- humanity-icon-theme

files:
exclude:
- usr/lib/x86_64-linux-gnu/gconv
- usr/share/man
- usr/share/doc/*/README.*
- usr/share/doc/*/changelog.*
- usr/share/doc/*/NEWS.*
- usr/share/doc/*/TODO.*

test:
debian:

image: appimagecrafters/tests-env:debian-stable
command: "./AppRun"
use_host_x: True

centos:
image: appimagecrafters/tests-env:centos-7
command: "./AppRun"
use_host_x: True

arch:
image: appimagecrafters/tests-env:archlinux-latest
command: "./AppRun"
use_host_x: True

fedora:
image: appimagecrafters/tests-env:fedora-30
command: "./AppRun"
use_host_x: True

ubuntu:
image: appimagecrafters/tests-env:ubuntu-xenial
command: "./AppRun"
use_host_x: True

AppImage:
arch: i686

2.6 Qt/Kde application (kcalc)

version: 1

AppDir:
path: ./AppDir

(continues on next page)

2.6. Qt/Kde application (kcalc) 13

appimage-builder, Release 1.0.0

(continued from previous page)

app_info:
id: org.kde.kcalc
name: kcalc
icon: accessories-calculator
version: 17.12.3
exec: usr/bin/kcalc

apt:
arch: amd64
sources:
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic main

→˓restricted universe multiverse'
key_url: 'http://keyserver.ubuntu.com/pks/lookup?op=get&

→˓search=0x3b4fe6acc0b21f32'
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic-

→˓updates main restricted universe multiverse'
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic-

→˓backports main restricted universe multiverse'

include:
- kcalc
- libpulse0

exclude:
- phonon4qt5
- libkf5service-bin
- perl
- perl-base
- libpam-runtime

files:
exclude:
- usr/lib/x86_64-linux-gnu/gconv
- usr/share/man
- usr/share/doc/*/README.*
- usr/share/doc/*/changelog.*
- usr/share/doc/*/NEWS.*
- usr/share/doc/*/TODO.*

runtime:
env:

APPDIR_LIBRARY_PATH: $APPDIR/lib/x86_64-linux-gnu:$APPDIR/usr/lib/x86_64-linux-
→˓gnu:$APPDIR/usr/lib/x86_64-linux-gnu/pulseaudio

test:
debian:

image: appimagecrafters/tests-env:debian-stable
command: "./AppRun"
use_host_x: True
env:

QT_DEBUG_PLUGINS: 1
centos:

image: appimagecrafters/tests-env:centos-7
command: "./AppRun"
use_host_x: True
env:

QT_DEBUG_PLUGINS: 1
arch:

(continues on next page)

14 Chapter 2. First steps

appimage-builder, Release 1.0.0

(continued from previous page)

image: appimagecrafters/tests-env:archlinux-latest
command: "./AppRun"
use_host_x: True
env:

QT_DEBUG_PLUGINS: 1
fedora:

image: appimagecrafters/tests-env:fedora-30
command: "./AppRun"
use_host_x: True
env:

QT_DEBUG_PLUGINS: 1
ubuntu:

image: appimagecrafters/tests-env:ubuntu-xenial
command: "./AppRun"
use_host_x: True

AppImage:
update-information: None
sign-key: None
arch: x86_64

2.7 Multimedia application (VLC)

version: 1

script:
- rm -r ./AppDir || true

AppDir:
path: ./AppDir

app_info:
id: vlc
name: VLC media player
icon: vlc
version: 3.0.8-0-gf350b6b5a7
exec: usr/bin/vlc

apt:
arch: amd64
sources:
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic main

→˓restricted universe multiverse'
key_url: 'http://keyserver.ubuntu.com/pks/lookup?op=get&

→˓search=0x3b4fe6acc0b21f32'
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic-

→˓updates main restricted universe multiverse'

include:
- vlc

test:
debian:

(continues on next page)

2.7. Multimedia application (VLC) 15

appimage-builder, Release 1.0.0

(continued from previous page)

image: appimagecrafters/tests-env:debian-stable
command: "./AppRun"
use_host_x: True

centos:
image: appimagecrafters/tests-env:centos-7
command: "./AppRun"
use_host_x: True

arch:
image: appimagecrafters/tests-env:archlinux-latest
command: "./AppRun"
use_host_x: True

fedora:
image: appimagecrafters/tests-env:fedora-30
command: "./AppRun"
use_host_x: True

ubuntu:
image: appimagecrafters/tests-env:ubuntu-xenial
command: "./AppRun"
use_host_x: True

AppImage:
arch: x86_64

2.8 PyQt5 application

Packaging a Python3 application into an AppImage is quite similar to packaging a regular compiled application. The
trick consist on embedding the python interpreter along with the application code.

2.8.1 Requirements

• modern Debian/Ubuntu system

• python3.6 and pip

• appimage-builder installed

• apt-get

2.8.2 Instructions

0. Use the recipe below as template

1. Copy the application code into AppDir/usr/src

2. Copy the application icon to AppDir/usr/share/icons/hicolor/256x256/apps/

3. Install the application requirements using pip: python3 -m pip install –system –ignore-installed –prefix=/usr
–root=AppDir -r ./requirements.txt

4. Setup the PYTHONHOME and PYTHONPATH environment variables

5. Run appimage-builder

16 Chapter 2. First steps

appimage-builder, Release 1.0.0

Note: If you are embedding a python version different than 3.6 you will have to change the version number in the
PYTHONPATH.

The complete example source code can be found here.

2.8.3 Recipe

version: 1
script:

Remove any previous build
- rm -rf AppDir | true
Make usr and icons dirs
- mkdir -p AppDir/usr/src
Copy the python application code into the AppDir
- cp main.py AppDir/usr/src -r
Install application dependencies
- python3 -m pip install --system --ignore-installed --prefix=/usr --root=AppDir -r

→˓./requirements.txt

AppDir:
path: ./AppDir

app_info:
id: org.appimage-crafters.python-appimage-example
name: python appimage hello world
icon: utilities-terminal
version: 0.1.0
Set the python executable as entry point
exec: usr/bin/python3
Set the application main script path as argument. Use '$@' to forward CLI

→˓parameters
exec_args: "$APPDIR/usr/src/main.py $@"

apt:
arch: amd64
sources:
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic main

→˓restricted universe multiverse'
key_url: 'http://keyserver.ubuntu.com/pks/lookup?op=get&

→˓search=0x3b4fe6acc0b21f32'

include:
- python3
- python3-pkg-resources
- python3-pyqt5

exclude: []

runtime:
env:

Set python home
See https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHOME
PYTHONHOME: '${APPDIR}/usr'
Path to the site-packages dir or other modules dirs

(continues on next page)

2.8. PyQt5 application 17

https://github.com/AppImageCrafters/appimage-builder/tree/main/recipes/pyqt5

appimage-builder, Release 1.0.0

(continued from previous page)

See https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
PYTHONPATH: '${APPDIR}/usr/lib/python3.6/site-packages'

test:
fedora:

image: appimagecrafters/tests-env:fedora-30
command: ./AppRun
use_host_x: true

debian:
image: appimagecrafters/tests-env:debian-stable
command: ./AppRun
use_host_x: true

arch:
image: appimagecrafters/tests-env:archlinux-latest
command: ./AppRun
use_host_x: true

centos:
image: appimagecrafters/tests-env:centos-7
command: ./AppRun
use_host_x: true

ubuntu:
image: appimagecrafters/tests-env:ubuntu-xenial
command: ./AppRun
use_host_x: true

AppImage:
update-information: 'gh-releases-zsync|AppImageCrafters|python-appimage-

→˓example|latest|python-appimage-*x86_64.AppImage.zsync'
sign-key: None
arch: x86_64

2.8.4 Tips/Tricks

Resolving python versions

In some scenarios a fixed python version may be required. If this version is not included in your default repository
you may find it in others such as:

• the deadsnakes ppa for Ubuntu

Installing dependencies using the embed python

If you are embedding a python version different from the one in your system the pip install command will fail to resolve
and install the right packages (it will install the packages for the python version in your system). To workaround this
issue you will have to use the python in the bundle.

To use the bundled python binary we will move the pip install command from the main script section to the ‘af-
ter_bundle’ section. There we will also need to configure the python home, paths and provably install pip. In the
following snippet you will find an example:

AppDir:

after_bundle: |
Set python 3.9 env

(continues on next page)

18 Chapter 2. First steps

https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa
https://docs.python.org/es/3/using/cmdline.html?highlight=pythonhome#environment-variables

appimage-builder, Release 1.0.0

(continued from previous page)

export PYTHONHOME=${APPDIR}/usr
export PYTHONPATH=${APPDIR}/usr/lib/python3.9/site-packages:$APPDIR/usr/lib/python3.

→˓9
export PATH=${APPDIR}/usr/bin:$PATH
Set python 3.9 as default
ln -fs python3.9 $APPDIR/usr/bin/python3
Install pip
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3.9 get-pip.py
Install pipenv
python3.9 -m pip install pipenv
Generate the requirements.txt file
python3.9 -m pipenv lock -r > requirements.txt
Install application dependencies in AppDir
python3.9 -m pip install --upgrade --isolated --no-input --ignore-installed --

→˓prefix=$APPDIR/usr wheel
python3.9 -m pip install --upgrade --isolated --no-input --ignore-installed --

→˓prefix=$APPDIR/usr -r ./requirements.txt

SSL Certificates

Sadly in the GNU/Linux world the SSL certificates are not stored in a fixed location, therefore if we include libssl.so
in our bundle it may not be able to find the certificates in some distributions. This is issue is discussed in detail in the
probono Linux Platform Issues talk. To work around it we could embed our own copy of the certificates.

The certifi python package give us a curated collection of Root Certificates that we can embed. It can be installed
using pip o the python3-certifi package from Debian and Ubuntu repositories.

Additionally you will have to set the SSL_CERT_FILE environment pointing to the cacert.pem file.

runtime:
env:
Set python home
See https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHOME
PYTHONHOME: '${APPDIR}/usr'
Path to the site-packages dir or other modules dirs
See https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
PYTHONPATH: '${APPDIR}/usr/lib/python3.8/site-packages'
SSL Certificates are placed in a different location for every system therefore

→˓we ship our own copy
SSL_CERT_FILE: '${APPDIR}/usr/lib/python3.8/site-packages/certifi/cacert.pem'

2.9 Path Mapping (GIMP)

In this recipe you will learn how to map file paths in order to work-around fixed paths in compiled binaries. In the
process we will create an AppImage for the GNU Image Manipulation Program.

For this example we will used the binaries from the Gimp deb package, but if you can also build your own binaries
from source.

2.9. Path Mapping (GIMP) 19

https://gitlab.com/probono/platformissues/-/blob/master/README.md#certificates

appimage-builder, Release 1.0.0

2.9.1 Annotations

Gimp is a huge and complex project. It needs python, gtk, BABL, GEGL, fontsconfig and many other components
therefore we must properly setup everyone for behaving well in a portable environment. This setup is made using the
environment variables that those pieces of software use in the runtime > env section.

• PYTHON: requires PYTHONPATH

• GTK: requires GTK_PATH , GTK_EXE_PREFIX, GTK_DATA_PREFIX

• GDK-Pixbuf: requires the loaders path to be present in the LIBRARY_PATH

• GIMP: requires BABL_PATH, GEGL_PATH, GIMP2_LOCALEDIR

Besides the above mentioned configuration we still need to make Gimp able to find it’s configuration and data files.
Those files are usually installed to /etc/gimp/2.0/ and /usr/share/gimp/2.0 but those paths are hardcoded on build. To
make them available we will use the runtime > path_mappings feature as follows:

runtime:
path_mappings:
- /etc/gimp/2.0/:$APPDIR/etc/gimp/2.0/
- /usr/share/gimp/2.0/:$APPDIR/usr/share/gimp/2.0/

At runtime the Gimp binary will be deceived to access $APPDIR/etc/gimp/2.0/ instead of /etc/gimp/2.0/ and
/usr/share/gimp/2.0/ instead of $APPDIR/usr/share/gimp/2.0/.

2.9.2 Recipe

version: 1

AppDir:
path: ./AppDir

app_info:
id: gimp
name: GNU Image Manipulation Program
icon: gimp
version: latest
exec: usr/bin/gimp

apt:
arch: amd64
sources:
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic main

→˓restricted universe multiverse'
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic-

→˓updates main restricted universe multiverse'
key_url: 'http://keyserver.ubuntu.com/pks/lookup?op=get&

→˓search=0x3b4fe6acc0b21f32'

include:
- gimp
- libgtk2.0-0
- librsvg2-common
- libjson-glib-1.0-0
- liblcms2-2
- libgexiv2-2

(continues on next page)

20 Chapter 2. First steps

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://www.geany.org/manual/gtk/gtk/gtk-running.html

appimage-builder, Release 1.0.0

(continued from previous page)

- python2.7
- libgirepository-1.0-1
- librsvg2-2
- librsvg2-bin
- graphviz
- libamd2
- libbtf1
- libcamd2
- libccolamd2
- libcholmod3
- libcolamd2
- libcxsparse3
- libgexiv2-2
- libgirepository-1.0-1
- libglib2.0-0
- libglu1-mesa
- libgs9
- libjpeg8
- libjson-glib-1.0-0
- libklu1
- liblapack3
- liblcms2-2
- libldl2
- liblensfun1
- libpango-1.0-0
- libpangocairo-1.0-0
- libpng16-16
- librbio2
- librsvg2-2
- libsdl1.2debian
- libspqr2
- libsuitesparseconfig5
- libtiff5
- libumfpack5
- libv4l-0
- libwebp6
- python-gobject-2
- libwebpmux3
- libwebpdemux2
- libpoppler-glib8
- libmng2
- libfreetype6
- libfontconfig1
- libblas3
- libpulse0

exclude:
- adwaita-icon-theme
- humanity-icon-theme

files:
exclude:
- usr/lib/x86_64-linux-gnu/gconv
- usr/share/man
- usr/share/doc/*/README.*
- usr/share/doc/*/changelog.*
- usr/share/doc/*/NEWS.*

(continues on next page)

2.9. Path Mapping (GIMP) 21

appimage-builder, Release 1.0.0

(continued from previous page)

- usr/share/doc/*/TODO.*
- usr/include

runtime:
path_mappings:

- /etc/gimp/2.0/:$APPDIR/etc/gimp/2.0/
- /usr/share/gimp/2.0/:$APPDIR/usr/share/gimp/2.0/

env:
APPDIR_LIBRARY_PATH: '$APPDIR/usr/lib/x86_64-linux-gnu:$APPDIR/lib/x86_64-linux-

→˓gnu:$APPDIR/usr/lib:$APPDIR/usr/lib/x86_64-linux-gnu/gdk-pixbuf-2.0/2.10.0/loaders'
GTK_EXE_PREFIX: $APPDIR/usr
GIMP2_LOCALEDIR: $APPDIR/usr/share/locale
PYTHONPATH: $APPDIR/usr/lib/python2.7:$APPDIR/usr/lib/python2.7/site-packages:

→˓$PYTHONPATH
GTK_PATH: $APPDIR/lib/gtk-2.0
GTK_DATA_PREFIX: $APPDIR
XDG_DATA_DIRS: $APPDIR/share:$XDG_DATA_DIRS
BABL_PATH: $APPDIR/usr/lib/x86_64-linux-gnu/babl-0.1
GEGL_PATH: $APPDIR/usr/lib/x86_64-linux-gnu/gegl-0.4

test:
debian:

image: appimagecrafters/tests-env:debian-stable
command: "./AppRun"
use_host_x: True

centos:
image: appimagecrafters/tests-env:centos-7
command: "./AppRun"
use_host_x: True

fedora:
image: appimagecrafters/tests-env:fedora-30
command: "./AppRun"
use_host_x: True

ubuntu:
image: appimagecrafters/tests-env:ubuntu-xenial
command: "./AppRun"
use_host_x: True

AppImage:
arch: x86_64

2.10 Flutter Application

Flutter is Google’s UI toolkit for building natively compiled applications for mobile, web, and desktop from a single
codebase. In page you will learn how to pack a Flutter desktop project for Linux using the AppImage format.

For the purpose we will be using a simple hello world application which is available at: https://github.com/
AppImageCrafters/appimage-builder-flutter-example

2.10.1 Preparing your system

• Install Flutter

• Install appimage-builder

22 Chapter 2. First steps

https://flutter.dev/
https://github.com/AppImageCrafters/appimage-builder-flutter-example
https://github.com/AppImageCrafters/appimage-builder-flutter-example
https://flutter.dev/docs/get-started/install/linux
https://appimage-builder.readthedocs.io/en/latest/intro/install.html

appimage-builder, Release 1.0.0

2.10.2 Building the flutter app

We will use the linux desktop target of Flutter to generate our application binaries. This target is currently only
available in the beta channel therefore we need to enable it. Once it’s enable we can generate the binaries.

enable desktop builds
flutter channel beta
flutter upgrade
flutter config --enable-linux-desktop

build desktop release
flutter build linux

Our application binaries should be somewhere inside the build dir, usually build/linux/x64/release/bundle. We will
copy this this folder to our work dir as AppDir:

cp build/linux/x64/release/bundle $PWD/AppDir

2.10.3 Generating the recipe

We will use the –generate method to draft an initial recipe for our project. In the process you’ll be prompted with a
set of questions that will help the tool to process your project.

Notice that the application must run in order to properly analyse it’s runtime dependencies.

appimage-builder --generate

Basic Information :
? ID [Eg: com.example.app] : com.example.flutter_hello
? Application Name : Flutter Hello
? Icon : utilities-terminal
? Version : latest
? Executable path relative to AppDir [usr/bin/app] : hello_flutter
? Arguments [Default: $@] : $@
? Update Information [Default: guess] : guess
? Architecture : amd64

2.10.4 Generating the AppImage

At this point we should have a working recipe that can be used to generate an AppImage from our flutter project. To
do so execute appimage-builder and the packaging process will start.

After deploying the runtime dependencies to the AppDir and configuring then the tool will proceed to test the applica-
tion according to test cases defined in the recipe. This will give us the certainty that our app runs in the target system.
It’s up to you to manually verify that all features work as expected. Once the tools completes its execution you should
find an AppImage file in your current work dir.

appimage-builder --recipe AppImageBuilder.yml

2.10.5 Polishing the recipe

Hooray! You should have now an AppImage that can be shipped to any GLibC based GNU/Linux distribution. But
there is some extra work to do. The recipe we have is made to freeze the current runtime which include certain parts

2.10. Flutter Application 23

appimage-builder, Release 1.0.0

of your system (such as theme modules) that may not be required in the final bundle. Therefore we will proceed to
remove them from the recipe.

Grab your favourite text editor and open the AppImageBuilder.yml file.

Deploy binaries from the script section

Every time we run appimage-builder we need to first copy the application binaries into the AppDir. This step can be
made part of the recipe as using the script section as follows:

script:
- rm -rf AppDir | true
- cp -r build/linux/x64/release/bundle $APPDIR

Notice the usage of the APPDIR environment variable, this is exported by appimage-builder at runtime.

Refine the packages include list

In the apt > include section you may find a list of packages. Those packages that are tightly related to your desktop
environment (in my case KDE) or to some external system service can be removed in order to save some space but
you will have to always validate the resulting bundle using the tests cases. You can even try to boil down your list to
only libgtk-3-0 and manually add the missing libs (if any).

2.10.6 Final recipe

After following the tutorial you should end with a recipe similar to this one. It could be used as starting point if you
don’t want to use the –generate method.

appimage-builder recipe see https://appimage-builder.readthedocs.io for details
version: 1
script:
- rm -rf AppDir || true
- cp -r build/linux/x64/release/bundle AppDir
- mkdir -p AppDir/usr/share/icons/hicolor/64x64/apps/
- mv AppDir/lib/ AppDir/usr/
- cp flutter-mark-square-64.png AppDir/usr/share/icons/hicolor/64x64/apps/

AppDir:
path: ./AppDir
app_info:
id: org.appimagecrafters.hello-flutter
name: Hello Flutter
icon: flutter-mark-square-64
version: latest
exec: hello_flutter
exec_args: $@

apt:
arch: amd64
allow_unauthenticated: true
sources:
- sourceline: deb http://archive.ubuntu.com/ubuntu/ bionic main restricted

→˓universe multiverse
- sourceline: deb http://archive.ubuntu.com/ubuntu/ bionic-updates main

→˓restricted universe multiverse
- sourceline: deb http://archive.ubuntu.com/ubuntu/ bionic-backports main

→˓restricted universe multiverse
(continues on next page)

24 Chapter 2. First steps

appimage-builder, Release 1.0.0

(continued from previous page)

- sourceline: deb http://security.ubuntu.com/ubuntu bionic-security main
→˓restricted universe multiverse

include:
- libgtk-3-0
exclude:
- humanity-icon-theme
- hicolor-icon-theme
- adwaita-icon-theme
- ubuntu-mono

files:
exclude:
- usr/share/man
- usr/share/doc/*/README.*
- usr/share/doc/*/changelog.*
- usr/share/doc/*/NEWS.*
- usr/share/doc/*/TODO.*

test:
fedora:

image: appimagecrafters/tests-env:fedora-30
command: ./AppRun
use_host_x: true

debian:
image: appimagecrafters/tests-env:debian-stable
command: ./AppRun
use_host_x: true

arch:
image: appimagecrafters/tests-env:archlinux-latest
command: ./AppRun
use_host_x: true

centos:
image: appimagecrafters/tests-env:centos-7
command: ./AppRun
use_host_x: true

ubuntu:
image: appimagecrafters/tests-env:ubuntu-xenial
command: ./AppRun
use_host_x: true

AppImage:
arch: x86_64
update-information: guess
sign-key: None

2.11 Gambas3 Application

In this tutorial you will learn how to pack a Gambas3 application using the AppImage format. For the purpose we will
use an Ubuntu 18.04 system and the appimage-builder tool.

The tutorial includes several troubleshooting steps that are required when packaging interpreted languages and may
be a bit complicated for novice users. If want to get your application packaged quickly please go to the “Resume”
section, download the recipe template, replace the binary, update the information and repack.

Gambas is a free development environment and a full powerful development platform based on a Basic interpreter
with object extensions, as easy as Visual Basic™.

2.11. Gambas3 Application 25

http://gambas.sourceforge.net/en/main.html

appimage-builder, Release 1.0.0

2.11.1 Requirements

• Ubuntu 18.04 system

• appimage-builder (see Get appimage-builder)

• git

• gambas3 (see Gambas PPA Install instructions)

2.11.2 Getting the source code

For this tutorial we will be using a simple “Hello World” application without any special modifications. Its source
code can be found at Github.

git clone https://github.com/AppImageCrafters/appimage-demo-gambas3.git

2.11.3 Building

To build the gambas3 application we will use the commands gbc3 and gba3 as follows.

cd appimage-demo-gambas3/
gbc3 project/
gba3 project/ -o appimage-demo-gambas3.gambas

2.11.4 Prepare the AppDir

Once we have compiled the application we will proceed to prepare our AppDir. Which means coping the application
binary and the icon inside the AppDir as follows:

mkdir -p AppDir/usr/bin
cp appimage-demo-gambas3.gambas AppDir/usr/bin/
mkdir -p AppDir/usr/share/icons/hicolor/32x32/apps/
cp project/mapview.png AppDir/usr/share/icons/hicolor/32x32/apps/

2.11.5 Generating the recipe

Once we have the binary and the icon in place we proceed to call appimage-builder generate and answer the prompts
as follows, notice that the file extension is not being included.

appimage-builder --generate

Basic Information :
? ID [Eg: com.example.app] : org.appimagecrafters.gambas3-demo
? Application Name : Gambas3 Demo
? Icon : mapview
? Version : latest
? Executable path relative to AppDir [usr/bin/app] : usr/bin/appimage-demo-gambas3.
→˓gambas
? Arguments [Default: $@] : $@
? Update Information [Default: guess] : guess
? Architecture : amd64

26 Chapter 2. First steps

https://launchpad.net/~gambas-team/+archive/ubuntu/gambas3
https://github.com/AppImageCrafters/appimage-demo-gambas3

appimage-builder, Release 1.0.0

This command gathers the required information to generate a recipe, then it runs the application to find the runtime
dependencies. Once your application is started must close it in order to proceed with the recipe generation. In the end
a file name AppImageBuilder.yml will be created in the current working directory that should look like this:

appimage-builder recipe see https://appimage-builder.readthedocs.io for details
version: 1
AppDir:

path: ./AppDir
app_info:
id: org.appimagecrafters.gambas3-demo
name: Gambas3 Demo
icon: mapview
version: latest
exec: usr/bin/appimage-demo-gambas3.gambas
exec_args: $@

runtime:
env:

APPDIR_LIBRARY_PATH: $APPDIR/usr/lib/x86_64-linux-gnu:$APPDIR/usr/lib/x86_64-
→˓linux-gnu/gconv:$APPDIR/usr/lib/x86_64-linux-gnu/gtk-2.0/2.10.0/engines:$APPDIR/lib/
→˓x86_64-linux-gnu:$APPDIR/usr/lib/x86_64-linux-gnu/qt4/plugins/accessible:$APPDIR/
→˓usr/lib/gambas3:$APPDIR/usr/lib/x86_64-linux-gnu/qt4/plugins/accessiblebridge:
→˓$APPDIR/usr/lib/x86_64-linux-gnu/gdk-pixbuf-2.0/2.10.0/loaders
apt:
arch: amd64
allow_unauthenticated: true
sources:
- sourceline: deb http://archive.ubuntu.com/ubuntu/ bionic main restricted

→˓universe multiverse
- sourceline: deb http://archive.ubuntu.com/ubuntu/ bionic-updates main

→˓restricted universe multiverse
- sourceline: deb http://security.ubuntu.com/ubuntu bionic-security main

→˓restricted universe multiverse
- sourceline: deb http://archive.neon.kde.org/user bionic main
- sourceline: deb http://ppa.launchpad.net/gambas-team/gambas3/ubuntu bionic main
include:
- gambas3-gb-qt4
- gambas3-runtime
- gtk2-engines-pixbuf
- libaudio2
- libexpat1
- libgcrypt20
- libgtk2.0-0
- liblz4-1
- liblzma5
- libpcre3
- libsm6
- libsystemd0
- libxau6
- libxdmcp6
- libxext6
- libxfixes-dev
- libxinerama1
- libxrender1
- libxt6
- qt-at-spi
exclude: []

files:
exclude:

(continues on next page)

2.11. Gambas3 Application 27

appimage-builder, Release 1.0.0

(continued from previous page)

- usr/share/man
- usr/share/doc/*/README.*
- usr/share/doc/*/changelog.*
- usr/share/doc/*/NEWS.*
- usr/share/doc/*/TODO.*

test:
fedora:

image: appimagecrafters/tests-env:fedora-30
command: ./AppRun
use_host_x: true

debian:
image: appimagecrafters/tests-env:debian-stable
command: ./AppRun
use_host_x: true

arch:
image: appimagecrafters/tests-env:archlinux-latest
command: ./AppRun
use_host_x: true

centos:
image: appimagecrafters/tests-env:centos-7
command: ./AppRun
use_host_x: true

ubuntu:
image: appimagecrafters/tests-env:ubuntu-xenial
command: ./AppRun
use_host_x: true

AppImage:
arch: null
update-information: guess
sign-key: None

2.11.6 Fixing-up the recipe

Sadly appimage-builder is not capable yet of generating perfect recipes in the first ron for gambas3 applications so we
will have to do some manual tuning.

AppImage architecture

If we proceed to run appimage-builder without fixing anything we will be prompted with an error like this:

schema.SchemaError: Key 'AppImage' error:
Key 'arch' error:
None should be instance of 'str'

Which means that the tool wasn’t able to determine the right architecture, of the target application. This happens
because Gambas3 binaries are not regular ELF binaries. Therefore we must set it manually to “x86_64” (see final
recipe L95).

Gambas3 environment

Now we should be able to run appimage-builder but our project will fail on the test with the following error:

28 Chapter 2. First steps

https://github.com/AppImageCrafters/appimage-demo-gambas3/blob/main/AppImageBuilder.yml#L95
https://github.com/AppImageCrafters/appimage-demo-gambas3/blob/main/AppImageBuilder.yml#L95

appimage-builder, Release 1.0.0

gbr3: unable to load component: gb.image
$./AppRun FAILED, exit code: 1
ERROR:appimage-builder:Tests failed

It seems that some of the Gambas resources cannot be found. This is provably because it’s expected they to be installed
in the system, but they are in the bundle. To correct this we use the “GB_PATH” environment variable that must point
to the gbc3 binary.

To define a AppImage environment variable add the following to the recipe:

runtime:
env:
GB_PATH: $APPDIR/usr/bin/gbr3

Now we can run appimage-builder again. This time the application will start but it may be just an empty window. If
this happens provably we are missing some other gambas3 extensions. Those “should” be resolved by the package
manager but for some reasons the packages didn’t include it. Therefore, we will have to manually include them.

In my case I had to add the following packages to the apt include list:

• gambas3-gb-form

• gambas3-gb-gtk3

Entrypoint

Now when we run appimage-builder almost all test with the exception of Centos. appimage-builder uses a custom
AppRun binary that configures the bundle runtime environment before calling the application and when an external
application is called this configuration is removed. As the Gambas3 binaries are not ELF files the execution flow is
going out at some point and returning which cases that a part of those settings are lost. To prevent this we must use as
the Gambas3 interpreter as entrypoint for our bundle and pass the application binary as argument as follows:

AppDir:
app_info:

exec: usr/bin/gbr3
exec_args: $APPDIR/usr/bin/appimage-demo-gambas3.gambas $@

With this fix our application should run in all the tests scenarios and is ready to be shipped.

2.11.7 Resume

To pack a Gambas3 application using the AppImage format we need to:

• deploy the application binary inside the AppDir

• include all the Gambas3 resources and plugins packages in the recipe

• set the environment variable “GB_PATH” to $APPDIR/usr/bin/gbr3

• set usr/bin/gbr3 as entry point and pass the application binary path as argument

A working recipe can be found here. You can use it as starting point instead of going all the troubleshooting of the
above steps.

2.11. Gambas3 Application 29

https://github.com/AppImageCrafters/appimage-demo-gambas3/blob/main/AppImageBuilder.yml

appimage-builder, Release 1.0.0

What’s next

You may also want to check the following sections:

• AppImage Updates

• AppImage Signing.

• Recipe

2.12 AppImage Updates

2.12.1 The AppImage Update process

An AppImage can be updated by just downloading the latest whole binary from the author or using delta updates.
The second method is much more efficient as it only downloads the parts that changed, therefore, it’s faster. Also the
appimageupdatetool checks the file signature (if present) to ensure that the downloaded file is legit.

The appimageupdatetool uses the the zsync method to do the delta update. Therefore a .zsync file is required for the
updates to work. The file url is embed into the AppImage, this is known as the update information. There are several
ways of specifying this url:

Update information

According to the specification an AppImage MAY have update information embedded for exactly one transport mech-
anism. Currently three transport mechanisms are available, but only one can be used for each given AppImage. Below
we describe then in detail.

zsync

The zsync transport requires a HTTP server that can handle HTTP range requests. Its update information
is in the form: zsync|<zsync file URL>, by example zsync|https://server.domain/path/
Application-latest-x86_64.AppImage.zsync

GitHub Releases

The GitHub Releases transport extends the zsync transport in that it uses version information from GitHub Releases.
Its update information is in the form:

gh-releases-zsync|<name space>|<project>|latest|<zsync file name>, by example
gh-releases-zsync|probono|AppImages|latest|Subsurface-*x86_64.AppImage.zsync

bintray-zsync

The bintray-zsync transport extends the zsync transport in that it uses ver-
sion information from Bintray. Its update information is in the form:
bintray-zsync|<username>|<repository>|<package name>|<zsync file path>, by exam-
ple bintray-zsync|probono|AppImages|Subsurface|Subsurface-_latestVersion-x86_64.
AppImage.zsync

30 Chapter 2. First steps

https://github.com/AppImage/AppImageUpdate/releases
https://github.com/AppImage/AppImageUpdate/releases
https://en.wikipedia.org/wiki/Rsync
https://github.com/AppImage/AppImageSpec/blob/master/draft.md#update-information
https://help.github.com/articles/about-releases/
https://bintray.com/

appimage-builder, Release 1.0.0

2.12.2 Setting AppImage update information

Before setting the update information make sure that zsync is installed in the build system. Then just add the update
information line according to the selected method in AppImage >> update-information like this

AppImage:
update-information: gh-releases-zsync|probono|AppImages|latest|Subsurface-*x86_64.

→˓AppImage.zsync
arch: aarch64

Once the build finish there will be a .zsync file next to the AppImage one. You should publish both of them
according to the chosen update protocol.

2.13 AppImage Signing

AppImage can be signed using the Open PGP standard. This ensures that the AppImage comes from the person who
pretends to be the author, and ensures that the file has not been tampered with.

2.13.1 Key Generation

To sign an AppImage file you will need a GPG key. Use gpg2 --full-gen-key to generate a new one. You can
also check the GnuPG documentation to learn more about it.

2.13.2 Signing

To make appimage-builder use your key to sign the resulting AppImage is enough with specifying the key id in the
AppImage >> signature section as follows:

AppImage:
sign-key: 69O7M4CCE10E0273853CDA121896X515CC81F0AD

NOTE: The private key must be available in the user keyring for GnuPG to find it. Use gpg --import private.
key to do it.

2.13.3 Reading the signature

To check if the AppImage was properly signed execute it with the following option --appimage-signature it
will print the signature, if any, to the standard output.

$./gnome-calculator-3.28.0-x86_64.AppImage --appimage-signature

-----BEGIN PGP SIGNATURE-----

iQIzBAABCgAdFiEEaafEzOEOAnOFPNoSGJblFcyB8KwFAl6g2B0ACgkQGJblFcyB
8KzP6g//WnCjb2HLLJ7U3muPb53py8Y5uwes7wE5w8Xbhy+ed42W6jp48cBl4O2G
cMaSJR8xH7yPvaLVWOIfDW6i7l3QUwtBfknLBdXrdlrhdMNzgXyQiKbwSgSfQcqi
kdaX2xFiXIYUV8e5BBZcfmKoFLNy4Lqfm2q8TICxiNiEdJ4eX5UTjfHWijmGg/pQ
yVNNNGGfhOboT71DNUiJTeffwgwbDIwHHPiuXvfRyB/h8qfIMTYv0GSM3lwNGUkO
3lN4LRkdZM9t19ZLpvR3uXt5DWlV7i5Q2uIp46pEUGJPnnneO3wM+wzo8r0e9Pur
Nm/KEA9UG7Lfk6ktlq+e1r2pPWtaPwZCk3A//afPBymmGJACzvbN/XitB++hE5nT
RUyRDiFW7BWMx9mWbdXaLEfR1ZOAY5rR/QJA6bKC4IvPSvHWUwYMkJdQV+MTZ0JL

(continues on next page)

2.13. AppImage Signing 31

https://www.gnupg.org/gph/en/manual/c14.html

appimage-builder, Release 1.0.0

(continued from previous page)

vCao5EtP6FgM0+Hm4dYoSReMK+9IpzIeg8uf8fgcaHa9lMZVryeJzmiR1vx5zu7Z
1DrDuMrqSyQ10wBBIKA7K8oJKOhrc+yNcCK8ldpYcDi4WVnvsb1ffKAKz8SdqI7/
RXwkbISmSkloDXkTRlZKW7Kwkj4spJzUEsKsDwif9C4A3lGJw2xj4pAqHlLH1uq9
u07mp5HT1wPtfoBFSXqX3MVLSzb6x4Qz1gzVXgWnhx5C5/K0L+8=
=Eruk
-----END PGP SIGNATURE-----

2.14 Testing

appimage-builder provides you a simple way of testing the AppImages compatibility with different systems. It uses
docker containers to simulate the runtime environments and runs the applications inside.

2.14.1 appimage-builder AppImages

AppImages built using appimage-builder include almost every library and resource required by the bundled
application to run. This allows to execute it in almost every GNU/Linux with glibc system. But there are some
libraries that cannot be embed for technical reasons. The most relevant is libGL for NVidia, it’s a requirement that
the client side driver version to be equal to the kernel side. Therefore the graphic stack libraries and others related to
then are excluded.

This leads us with a bundle that at runtime uses some libraries from the system and others from the bundle. If the ABI
or the implementations of those mixed libraries are not compatible the application will crash. Luckily the libraries
developers are careful enough to keep a good backward compatibility and the application works most of the times.
But the only way of being 100% sure is by testing.

There are other resources from the system that our applications uses. An incompatibility with them may also lead to a
crash. Here is a non-extensive list of those:

• icon themes

• fonts

• widgets themes (GTK/QT)

• Alsa / PulseAudio server

• X.Org server

• Wayland server

2.14.2 Tests in Docker container

appimage-builder provides a way of easily configuring a set of test using Docker containers to make sure your bundle
will work on a given system. Therefore you will need to have a working docker image with the system resources listed
above to make it work.

There is a list of pre-built docker images that you can use for your tests including the following GNU/Linux distribu-
tions:

• Arch appimagecrafters/tests-env:archlinux-latest

• Fedora appimagecrafters/tests-env:fedora-30

• Debian appimagecrafters/tests-env:debian-stable

• Ubuntu appimagecrafters/tests-env:ubuntu-bionic

32 Chapter 2. First steps

appimage-builder, Release 1.0.0

• Centos appimagecrafters/tests-env:centos-7

Those distributions are between the most populars or are base for others so if your app work there it has a high
provability to work on derivatives.

The whole docker images list can be found: https://hub.docker.com/r/appimagecrafters/tests-env

For details on how to setup the tests cases check the runtime specification.

2.14.3 Recipe tests setup

Tests cases can be described in the recipe file. Those are placed inside the AppDir >> test section. Bellow you
will find an example of a test case for Debian. To know more about this section check the runtime specification:

AppDir:
test:

debian:
image: appimagecrafters/tests-env:debian-stable
command: "./AppRun"
use_host_x: True
env:
QT_DEBUG_PLUGINS: 1

2.14.4 Manual test running

Any AppImage/AppDir can be also manually tested using the appimage-tester command. This is part of
appimage-builder since v0.5.2.

usage: appimage-tester [-h] [--log LOGLEVEL] --docker-images DOCKER_IMAGE
[DOCKER_IMAGE ...] [--test] [--static-test]
target

NOTE: Type 1 AppImages need to be extracted or mounted manually before running the tests.

Regular Docker tests

A regular test will try to run the target application inside the specified docker containers. A running X11 server is
required if the app has a GUI.

appimage-tester --test ~/MyApp-1.8.4.AppImage --docker-images 'appimagecrafters/
→˓tests-env:debian-stable'

Static Docker tests

Static test will lockup the external dependencies of the given target and will check if all of then are present in the
system contained in the docker image. This does not execute the application.

appimage-tester --static-test ~/MyApp-1.8.4.AppImage --docker-images
→˓'appimagecrafters/tests-env:debian-stable'

NOTE: Optional plugins can have runtime dependencies that may not be present in the test system but as they are
optional the app will run properly.

2.14. Testing 33

https://hub.docker.com/r/appimagecrafters/tests-env

appimage-builder, Release 1.0.0

2.15 Setup Helpers

appimage-builder includes support for making applications created with several technologies portable. It patches
bundle files and define environment variables so every binary behaves as expected.

Here you will fin a list of those with the features they support.

2.15.1 The GNU C Library (glibc)

glibc is at the core of almost every GNU/Linux binary and is responsible for dynamic linking and other start related
processes. appimage-builder makes use of the AppRun project to deal with the complexities of runtime setup.

The most significant issue is that AppImage must be always ran with the newest version of the glibc. To workaround
this issue appimage-builder setups two runtimes according to the AppRun specifications. At runtime AppRun will
select the right one.

See the AppRun usage instructions for more details.

2.15.2 MIME TYPES

In case custom mime-types are include the update-mime-database command will be executed to generate the respective
cache file.

2.15.3 GStreamer

GStreamer is a library for constructing graphs of media-handling components. When included appimage-builder will
define the following environment variables:

• GST_PLUGIN_PATH

• GST_PLUGIN_SYSTEM_PATH

• GST_REGISTRY_REUSE_PLUGIN_SCANNER

• GST_PLUGIN_SCANNER

• GST_PTP_HELPER

• GST_REGISTRY

It will also run gst “diagnostic” to force registry generation.

Note: You can find more detail about running gstreamer applications at: https://gstreamer.freedesktop.org/
documentation

2.15.4 glib/gdk/gtk

When bundled appimage-builder the following environment variables:

• GIO_MODULE_DIR

• GI_TYPELIB_PATH

• GSETTINGS_SCHEMA_DIR

34 Chapter 2. First steps

https://github.com/appimagecrafters/AppRun
https://github.com/AppImageCrafters/AppRun/blob/master/docs/USAGE.md
https://github.com/AppImageCrafters/AppRun/blob/master/docs/USAGE.md
https://gstreamer.freedesktop.org/documentation
https://gstreamer.freedesktop.org/documentation

appimage-builder, Release 1.0.0

• GDK_PIXBUF_MODULEDIR

• GDK_PIXBUF_MODULE_FILE

• GTK_EXE_PREFIX

• GTK_DATA_PREFIX

• GTK_PATH

Additionally it will run:

• glib-compile-schemas: to ensure that schema files inside the bundle get compiled

• gdk-pixbuf-query-loaders: to build loaders cache file. File paths will be patched

• gtk-update-icon-cache: to generate the icon theme cache files

Note: See https://docs.gtk.org/glib/running.html for more details about running Glib/Gtk applications.

2.15.5 Qt5

Qt5 is a cross-platform software development framework. When included in the bundle the tool will create a qt.conf
file with the proper configuration next to each executable to ensure they will be able to find their resources at runtime.

Note: You can read more about the qt.conf file at: https://doc.qt.io/qt-5/qt-conf.html

2.15.6 Java

Java is a programing language and development platform. When included in a bundle the JAVA_HOME environment
will be configured to the parent dir where the java binary is found.

2.15.7 Python

Python is a high-level, interpreted, general-purpose programming language. When included in the bundle the
PYTHONHOME will be set to the parent dir where the python binary is found.

Note: In cases when multiple versions of python are bundled you will have to manually define this variable.

2.15.8 OpenSSL

When libopenssl is embed the OPENSSL_ENGINES environment variable will be set to the proper location in the
bundle.

You chan check the generated AppRun.env file to verify it’s being set properly.

2.15. Setup Helpers 35

https://docs.gtk.org/glib/running.html
https://doc.qt.io/qt-5/qt-conf.html

appimage-builder, Release 1.0.0

2.15.9 LibGL

libGL requires a set of drivers to work properly. Those are usually located at <libs path>/dri/. This path will be set to
the environment variable LIBGL_DRIVERS_PATH

Note: Embedding libGL and family is discouraged as your app will not be able to use your system drivers.

2.16 Troubleshooting

Resulting AppImage can be defective for several reasons here we will explore then and explain the possible solutions.

2.16.1 Bundle information

The first thing to check when Appimage is created is the .bundle.yml file. It’s located in the AppDir root. This
file contain a resume of the packages included in the bundle and the libraries it expect to be present in the system. You
can inspect then too look for missing packages or undesired external dependencies.

NOTE: This file is only generated for AppImages built using appimage-builder >= v0.5.3.

appimage-builder

appimage-builder may be used with two different log levels in its arguments. The default --log level is INFO,
and the more informative --log level is DEBUG. Users may specify log arguements in the appimage-builder
command using the --log LOGLEVEL argument where “LOGLEVEL” is either “INFO” or “DEBUG”. e.g.
appimage-builder --log DEBUG --generate

usage: appimage-builder [-h] [--recipe RECIPE] [--log LOGLEVEL < INFO | DEBUG>]
[--skip-script] [--skip-build] [--skip-tests]
[--skip-appimage] [--generate]

AppImage crafting tool
optional arguments:
-h, --help show this help message and exit
--recipe RECIPE recipe file path (default: $PWD/AppImageBuilder.yml)
--log LOGLEVEL logging level (default: INFO, debug: DEBUG, e.g. appimage-builder --
→˓log DEBUG --generate)
--skip-script Skip script execution
--skip-build Skip AppDir building
--skip-tests Skip AppDir testing
--skip-appimage Skip AppImage generation
--generate Try to generate recipe from an AppDir

appimage-inspector

appimage-inspector is a tool for inspecting AppImages and AppDirs. It’s shipped along with appimage-builder
since v0.5.3. This tool allow us to query information about a given target bundle.

36 Chapter 2. First steps

https://dri.freedesktop.org/wiki/libGL/

appimage-builder, Release 1.0.0

usage: appimage-inspector [-h] [--log LOGLEVEL] [--print-needed]
[--print-runtime-needed]
[--print-dependants DO_PRINT_DEPENDANTS]
target

AppImage/AppDir analysis tool

positional arguments:
target AppImage or AppDir to be inspected

optional arguments:
-h, --help show this help message and exit
--log LOGLEVEL logging level (default: INFO)
--print-needed Print bundle needed libraries
--print-runtime-needed

Print bundle needed libraries for the current system
--print-dependants DO_PRINT_DEPENDANTS

Print bundle libraries that depends on

2.16.2 Issues

Non portable application

Many applications are coded to find their resources in fixed locations. Every time an AppImage runs it’s mounted in
a different location, something like /tmp/.mountXXXXXX where the exes are replaced by random alpha-numeric
characters. This means that the app resource path will change every time it’s ran.

Therefore app developers should make their apps configurable at runtime. This can be done by using environment
variables or a configuration file next to the main binary.

Missing libraries

In some scenarios your application may crash on a certain system. This is usually happens because a required library is
not being embed. To identify the culprit run your application using LD_DEBUG=libs. This will print to the standard
output the information related to the shared libraries loading an unloading.

The output will look like this:

5491: find library=libpthread.so.0 [0]; searching
5491: search cache=/etc/ld.so.cache
5491: trying file=/lib/x86_64-linux-gnu/libpthread.so.0
5491:
5491:
5491: calling init: /lib/x86_64-linux-gnu/libpthread.so.0

In this case libpthread.so.0 is found and initialized. As we will have a missing library we have to look for those
output blocks where there is a find library with out a init:. To do it in a test inside docker use the following
snippet:

test:
debian:
image: appimagecrafters/tests-env:fedora-30
command: "./AppRun"
use_host_x: True

(continues on next page)

2.16. Troubleshooting 37

appimage-builder, Release 1.0.0

(continued from previous page)

env:
- LD_DEBUG=libs

More information about the glibc loader debug information can be found on the tool manual pages.

To fix this issue just add to your bundle the package that provides this library.

Missing resources

To detect which resource files (settings files, icons, database files or others) are being used by the application we can
use strace. Specifically you can trace openat calls like this:

$strace -e trace=openat ls

openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libpcre.so.3", O_RDONLY|O_CLOEXEC) = 3
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libdl.so.2", O_RDONLY|O_CLOEXEC) = 3
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3
openat(AT_FDCWD, "/proc/filesystems", O_RDONLY|O_CLOEXEC) = 3
openat(AT_FDCWD, "/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
openat(AT_FDCWD, ".", O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_DIRECTORY) = 3
appimage-appsdir AppImageServices builder builder-tests-env libappimage
→˓ TheAppImageWay
appimage-firstrun apprun builder-docs cli-tool plasma-appimage-
→˓integration

Fixing this kind or issues is a bit more complicated as the path to the resources are sometime fixed in the source code.
If it’s possible you can try patching the binaries but the recommended solution is to modify the source code to resolve
the resource files from a relative location. For this purpose you can use a configuration file next to the main binary or
environment variables.

2.17 Full AppImage bundle

A full AppImage bundle is an AppImage that uses absolutely no libraries from the system. This allows to run it in
weird GNU/Linux or even in FreeBSD. A full bundle includes software components that are considered present in
every GNU/Linux distribution such as fonts config, libGL, libEGL and other related pieces of software.

2.17.1 Strong points & use cases

A full bundle is the best choice when we want to freeze a piece of software in time, as the only missing dependency
will be the Linux Kernel. It maximizes the portability/compatibility of the bundle allowing it to run in non GNU/Linux
system such as FreeBSD.

2.17.2 Draw backs

Adding more binaries to the bundle means that it will be bigger, usually about 30 Mb more. Also there is an issue
with the NVidia drivers, they require the client and the kernel modules to have the same version. So if your software
requires graphic acceleration and your target user may have an NVidia card making a full bundle may not be a good
idea.

38 Chapter 2. First steps

http://man7.org/linux/man-pages/man8/ld.so.8.html

appimage-builder, Release 1.0.0

2.17.3 Instructions

To make a full bundle you have to explicitly include those packages that are excluded by default. The recipe below
show how to create an full AppImage bundle for kcalc.

version: 1

AppDir:
path: ./AppDir

app_info:
id: org.kde.kcalc
name: kcalc
icon: accessories-calculator
version: 17.12.3
exec: usr/bin/kcalc

apt:
arch: amd64
sources:
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic main

→˓restricted universe multiverse'
key_url: 'http://keyserver.ubuntu.com/pks/lookup?op=get&

→˓search=0x3b4fe6acc0b21f32'
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic-

→˓updates main restricted universe multiverse'
- sourceline: 'deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ bionic-

→˓backports main restricted universe multiverse'

include:
- kcalc
- libpulse0

Full bundle requirements
- libx11-6
- libgl1
- libglapi-mesa
- libdrm2
- libegl1
- libxcb-shape0
- libxcb1
- libx11-xcb1
- fontconfig-config
- libfontconfig1
- libfreetype6
- libglx0
- libxcb-xfixes0
- libxcb-render0
- libxcb-glx0
- libxcb-shm0
- libglvnd0
- libxcb-dri3-0
- libxcb-dri2-0
- libxcb-present0

exclude:
- phonon4qt5
- libkf5service-bin

(continues on next page)

2.17. Full AppImage bundle 39

appimage-builder, Release 1.0.0

(continued from previous page)

- perl
- perl-base
- libpam-runtime

files:
exclude:

- usr/lib/x86_64-linux-gnu/gconv
- usr/share/man
- usr/share/doc/*/README.*
- usr/share/doc/*/changelog.*
- usr/share/doc/*/NEWS.*
- usr/share/doc/*/TODO.*

runtime:
env:

APPDIR_LIBRARY_PATH: $APPDIR/lib/x86_64-linux-gnu:$APPDIR/usr/lib/x86_64-linux-
→˓gnu:$APPDIR/usr/lib/x86_64-linux-gnu/pulseaudio

test:
debian:

image: appimagecrafters/tests-env:debian-stable
command: "./AppRun"
use_host_x: True

centos:
image: appimagecrafters/tests-env:centos-7
command: "./AppRun"
use_host_x: True

arch:
image: appimagecrafters/tests-env:archlinux-latest
command: "./AppRun"
use_host_x: True

fedora:
image: appimagecrafters/tests-env:fedora-30
command: "./AppRun"
use_host_x: True

ubuntu:
image: appimagecrafters/tests-env:ubuntu-xenial
command: "./AppRun"
use_host_x: True

AppImage:
update-information: None
sign-key: None
arch: x86_64

2.18 Producing AppImages on Gitlab CI

appimage-builder can be easily integrated into a gitlab-ci recipe. Here you will learn how to do it.

2.18.1 Docker Images

There is an appimage-builder docker image ready to be used on gitlab-ci you can find it here. It’s
based on Ubuntu 18.04 and brings all the dependencies required by the tool. The docker image name is:

40 Chapter 2. First steps

https://hub.docker.com/repository/docker/appimagecrafters/appimage-builder

appimage-builder, Release 1.0.0

appimagecrafters/appimage-builder.

2.18.2 Recipe

The usual approach while writing a gitlab-ci recipe for building AppImages is to use the before_script section to
install the application dependencies. In the script section we will do the project configuration, binary building and the
AppImage generation.

In the code snippet below you can find a complete gitlab-ci.yml recipe for building an AppImage for a Hello
World Qt project using the latest Qt from the KDE Neon repositories

appimage-amd64:
image: appimagecrafters/appimage-builder
before_script:

update appimage-builder (optional)
- apt-get update
- apt-get install -y git wget
- pip3 install --upgrade git+https://www.opencode.net/azubieta/appimagecraft.git

app build requirements
- echo 'deb http://archive.neon.kde.org/user/ bionic main' > /etc/apt/sources.

→˓list.d/neon.list
- wget -qO - https://archive.neon.kde.org/public.key | apt-key add -
- apt-get update
- apt-get install -y qt5-default qtdeclarative5-dev cmake

script:
- cmake . -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr
- make install DESTDIR=AppDir
- appimage-builder --skip-test

artifacts:
paths:

- '*.AppImage*'
expire_in: 1 week

2.18.3 OpenCode

Any Gitlab instance can be used to host your AppImage builds but it’s recommended to do it on opencode.net. This
instance part of the OpenDesktop ecosystem were the AppImageHub project lives. This will allow to mark published
binaries as “OFFICIAL”.

2.19 Producing AppImages on GitHub

2.19.1 Build AppImage Action

To produce an AppImage on GitHub use the build AppImage Action. This will run appimage-builder in an
Ubuntu container and will output the AppImage file in the current working directory.

It takes for input the path to the appimage-builder recipe file and outputs the paths to the AppImage and the
zsync file.

NOTE: Use the same sources lists for the recipe and the build system, otherwise resulting bundle may be faulty.

2.19. Producing AppImages on GitHub 41

https://docs.gitlab.com/ee/ci/yaml/#before_script
https://docs.gitlab.com/ee/ci/yaml/#script
https://www.opencode.net/azubieta/qt-hello-world/
https://www.opencode.net/azubieta/qt-hello-world/
http://archive.neon.kde.org/
https://www.opencode.net/
https://www.appimagehub.com/
https://github.com/marketplace/actions/build-appimage

appimage-builder, Release 1.0.0

2.19.2 Update Information

AppImage Update support fetching updates from GitHub releases. To enable it see the following update information
in your recipe file:

gh-releases-zsync|<user>|<project>|latest|*.AppImage.zsync`.

Replace <user> by the GitHub user or organization name and project buy the project name.

2.19.3 Workflow example

A complete example project can be found at: https://github.com/AppImageCrafters/appimage-demo-qt5

name: C/C++ AppImage

on:
push:
branches: [master]

pull_request:
branches: [master]

jobs:
build-appimage:

runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v2
- name: install dependencies

run: |
sudo apt-get update
sudo apt-get install -y qt5-default qtdeclarative5-dev cmake

- name: configure
run: cmake . -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr

- name: build
run: make -j`nproc` install DESTDIR=AppDir

- name: Build AppImage
uses: AppImageCrafters/build-appimage-action@master
env:
UPDATE_INFO: gh-releases-zsync|AppImageCrafters|qt-hello-world|latest|*x86_

→˓64.AppImage.zsync
with:
recipe: AppImageBuilder.yml

- uses: actions/upload-artifact@v2
with:
name: AppImage

2.20 Recipe

In this section is described the recipe specification and all the components that affects its behaviour.

42 Chapter 2. First steps

https://github.com/AppImageCrafters/appimage-demo-qt5

appimage-builder, Release 1.0.0

2.20.1 Script

The script section consists of a list of shell instructions. Those instructions will be executed using bash. It could
be used to compile your application and deploy its binaries to the AppDir.

Default variables

The following variables are set by appimage-builder in the script runtime:

• RECIPE: recipe location

• BUILD_DIR: build cache dir

• SOURCE_DIR: recipe location dir

• TARGET_APPDIR: target AppDir location

• BUILDER_ENV: exported environment variables file

Exported variables

To pass environment variables between scripts you need to write them to the file pointed by BUILDER_ENV as follows:

echo "VAR=VALUE" >> $BUILDER_ENV

Script Example

Clone, build and deploy a cmake application.

script:
- cd "$BUILD_DIR"
- git clone awesome-app
- cd awesome-app
- cmake .
- make DESTDIR="$TARGET_APPDIR" install

2.20.2 AppDir

The AppDir section is the heart of the recipe. It will contain information about the software being packed, its depen-
dencies, the runtime configuration, and the tests.

The execution order is as follows:

• bundle dependencies

• configure runtime

• run tests

Section scripts

It’s possible to insert scripts before and after the bundle and runtime steps. Those can be used to perform additional
tweaks to the AppDir before proceeding with the tests.

The allowed keys are:

2.20. Recipe 43

appimage-builder, Release 1.0.0

• before_bundle

• after_bundle

• before_runtime

• after_runtime

This is an example of how to use the after bundle to patch a configuration file.

AppDir:
after_bundle: |
echo "source /etc/timidity/freepats.cfg" | tee "$TARGET_APPDIR/etc/timidity/

→˓timidity.cfg"

app_info

• id: application id. Is a mandatory field and must match the application desktop entry name without the .
desktop extensions. It’s recommended to used reverse domain notation like org.goodcoders.app.

• name: Application name.

• icon: Application icon name.

• version: application version.

• exec: path to the application binary. In the case of interpreted programming languages such as Java, Python or
QML, it should point to the interpreter binary.

• exec_args: arguments to be passed when starting the application. You can make use of environment variables
such as $APPDIR to refer to the bundle root and/or $@ to pass arguments to the binary.

Example app_info block for a qmlscene application:

app_info:
id: org.apppimagecrafters.hello_qml
name: Hello QML
icon: text-x-qml
version: 1.0
exec: usr/lib/qt5/bin/qmlscene
exec_args: $@ ${APPDIR}/main.qml

apt

Use the apt-get tool to deploy packages to your AppDir. Packages will be deployed allong with their dependencies.
Include all the packages that your application will require at runtime with the exception of those providing drivers or
other hardware specific code.

• arch: Binaries architecture. Multi-arch setups are allowed.

• sources: apt sources to be used to retrieve the packages.

– sourceline: apt configuration source line. It’s recommended to include the Debian architecture on it to
speed up builds.

– key_url: apt key to validate the packages in the repository. An URL to the actual key is expected.

• include: List of packages to be included in the bundle. Package dependencies will also be bundled.

• exclude: List of packages to not bundle. Use it to exclude packages that aren’t required by the application.

44 Chapter 2. First steps

appimage-builder, Release 1.0.0

apt:
arch: [i386]
sources:
- sourceline: 'deb [arch=i386] http://mx.archive.ubuntu.com/ubuntu/ bionic main

→˓restricted universe multiverse'
key_url: 'http://keyserver.ubuntu.com/pks/lookup?op=get&search=0x3b4fe6acc0b21f32

→˓'

include:
- qmlscene
- qml-module-qtquick2

exclude:
- qtchooser

pacman

Use pacman to deploy packages to your AppDir. It uses the pacman configuration from the host system by default
but can be modified using the following keys:

• Architecture: (Optional) define the architecture to be used by pacman

• repositories: (Optional) define additional repositories

• include: (Required) define packages to be deployed into the AppDir

• exclude: (Optional) define packages to be excluded from deploying

• options: (Optional) define additional options to be set in the pacman.conf

Example:

pacman:
Architecture: x86_64
repositories:
core:

- https://mirror.rackspace.com/archlinux/$repo/os/$arch
- https://mirror.leaseweb.net/archlinux/$repo/os/$arch

include:
- bash

exclude:
- perl

options:
don't check package signatures
SigLevel: "Optional TrustAll"

files

The files section is used to manipulate (include/exclude) files directly. It’s executed after the apt or pacman deploy
methods. Globing expressions can be used to match multiple files at once.

• include: List of absolute paths to files. The file will be copied under the same name inside the AppDir. i.e.:
/usr/bin/xrandr will end at $APPDIR/usr/bin/xrandr.

• exclude: List of relative globing shell expressions to the files that will not be included in the AppDir. Expres-
sions will be evaluated relative to the AppDir. Use it to exclude unneeded files such as man pages or development
resources.

2.20. Recipe 45

https://docs.python.org/3.6/library/glob.html#module-glob

appimage-builder, Release 1.0.0

files:
exclude:
- usr/share/man
- usr/share/doc/*/README.*
- usr/share/doc/*/changelog.*
- usr/share/doc/*/NEWS.*
- usr/share/doc/*/TODO.*

runtime

Configure the application runtime environment, and path mappings.

• env: Environment variables to be set at runtime.

• path_mappings Setup path mappings to workaround binaries containing fixed paths. The mapping is per-
formed at runtime by intercepting every system call that contains a file path and patching it. Environment
variables are supported as part of the file path.

Paths are specified as follows: <source>:<target>

Use the $APPDIR environment variable to specify paths relative to it.

• arch: Explicitly define which architectures to be supported

• version: Explicitly define the runtime version to be used

• preserve: List of relative globing shell expressions to the files/folders that should not be modified by the Ap-
pImage generation process.

Example runtime section:

AppDir:
runtime:
arch: [x86_64, i386]
version: continuous
env:

PYTHONHOME: '${APPDIR}/usr'
path_mappings:

- /bin/bash:$APPDIR/bin/bash

test

The test section is used to describe test cases for your final AppImage. The AppDir as it’s can be already executed.
Therefore it can be placed inside a Docker container and executed. This section eases the process. Notice that you will
have to test that the application is properly bundled and isolated, therefore it’s recommended to use minimal Docker
images (i.e.: with no desktop environment installed).

IMPORTANT: Docker is required to be installed and running to execute the tests. Also the current use must have
permissions to use it.

Each test case has a name, which could be any alphanumeric string and the following parameters:

• image: Docker image to be used.

• before_command: run some test setup instructions here.

• command: command to execute.

• env: dict of environment variables to be passed to the Docker container.

46 Chapter 2. First steps

appimage-builder, Release 1.0.0

test:
fedora:
image: fedora:26
before_command: [-f main.qml]
command: "./AppRun main.qml"

ubuntu:
image: ubuntu:xenial
command: "./AppRun main.qml"

2.20.3 AppImage

The AppImage section refers to the final bundle creation.

• arch: AppImage runtime architecture. Usually, it should match the embed binaries architecture, but a different
—compatible one— could be used. For example, i386 binaries can be used in an AMD64 architecture.

• update-information: AppImage update information. See Making AppImages updateable.

• sign-key: The key to sign the AppImage. See Signing AppImage.

• file_name: Use it to rename your final AppImage. By default it will be named as follows: <AppDir.
app_info.name>-<AppDir.app_info.version>-<AppImage.arch>.AppImage

2.20.4 Environment variables

Environment variables can be placed anywhere in the configuration file using the following notation:
{{VAR_NAME}}.

AppDir:
app_info:
version: {{APP_VERSION}}
exec: 'lib/{{GNU_ARCH_TRIPLET}}/qt5/bin/qmlscene'

AppImage:
arch: '{{TARGET_ARCH}}'
file_name: 'myapp-{{APP_VERSION}}_{{TIMESTAMP}}-{{ARCH}}.AppImage'

2.20. Recipe 47

https://docs.appimage.org/packaging-guide/optional/updates.html
https://docs.appimage.org/packaging-guide/optional/signatures.html

	Getting help
	First steps
	Get appimage-builder
	Tutorial
	Frequent Asked Questions
	Shell application (BASH)
	Gnome application (gnome-calculator)
	Qt/Kde application (kcalc)
	Multimedia application (VLC)
	PyQt5 application
	Path Mapping (GIMP)
	Flutter Application
	Gambas3 Application
	AppImage Updates
	AppImage Signing
	Testing
	Setup Helpers
	Troubleshooting
	Full AppImage bundle
	Producing AppImages on Gitlab CI
	Producing AppImages on GitHub
	Recipe

